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ABSTRACT

An objective method for deriving the components of a generalized trans-

port tensor for a two-dimensional model is presented. The method used repre-

sentative meridional and vertical velocities and thermodynamic scalars at a

uniform grid to reduce the problem to solving two flux equations for two un-

knowns. One unknown is the stream function, coefficient of an antisymmetric

tensor, which corrects the Eulerian mean motions for Stokes drift. The other

is a time constant, which converts the deviatory velocity tensor (Reynold's

stress tensor for temporal averaging) to a symmetric transport tensor. The

complete asymmetric tensor is called a transporL rather than a diffusion tensor

because its divergence yields both advection and diffusion by the deviatory

velocities. Advantages and disadvantages of Lagrangian and Eulerian averages

are also discussed.
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INTRODUCTION

Atmospheric transport of trace species is a very controversial and con-

ceptually difficult subject despite the fact that only two processes are in-

volved: transport by mean motions and by deviations from the means. (Here the

latter are called deviatory motions.) This partitioning of the transport is

necessary for any model, whether conceptual, analytical or numerical, having

more than one independent spatial variable, because the complete transport can-

not be resolved deterministically. For example, in a 3-D model the size of the

averaging volume is primarily limited by the observations themselves. All ef-

fects of velocities which cannot be observed must be described statistically

via subgrid scale parameterizations. Increasing the averaging volume to include

all longitudes yields the conventional 2-D meridional-height model, although

one could integrate over all latitudes to produce a longitudinal-height model.

In either case, the local mean motions which are resolved in a 3-D model,

contribute to both mean and deviatory motions in a 2-D model. If we restrict

discussion to zonally averaged models, a Fourier analysis of the 3-D local-

mean velocities includes the zonal-mean velocities as wave number zero, while

all non-zero wave numbers contribute to the deviatory motions. In other words,

the classification of all non-zero wave numbers switches by the elimination of

one spatial dimension.

The switch in classification is not trivial, however, because it implies

a change from a known variable, either measured or predicted, to an unknown

whose effects must be described statistically. In principle, the description

could be rather simple and straightforward if the observations were not so

severely limited. In fact, the limitations make it very difficult to obtain

reliable or representative statistics and, consequently, there has been con-

siderable subjectivity in their description, and controversy about the methods
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used to parameterize their effects.

OPEN EULERIAN SYSTEMS VERSUS SEMICLOSED LAGRANGIAN SYSTEMS

The earth's atmosphere is strongly anisotropic with typical horizontal

length scales 500 to 1000 times the vertical scales. Consistent with this di-

mensional asymmetry, the large-scale waves which dominate the transport have

horizontal speeds of tens of meters per second and vertical speeds of centi-

meters per second. These vertical speeds are too small to be measured by any

conventional in situ or remote sensors, so, by observational default, the large-

scale waves appear to be two-dimensional. But, if one considers the atmo-

sphere's anisotropy, it becomes clear that small vertical speeds are as ef-

fective to vertical transport as are large horizontal speeds to horizontal

transport. The velocities and distances are similarly scaled.

Given the observational limitations, that only horizontal velocities can

be measured and that only the large-scale winds can be resolved, we are forced

to compute the associated large-scale vertical velocities from the equations

of fluid dynamics, appropriately modified to apply to large bulk systems. The

fundamental equations are derived for small elemental volumes, say 1 mm,3 or

31 cm . But, for global or hemispheric atmospheric analyses, we must use bulk
volumes of 1019 or 120 3

rOcm .

22 3The volumes used in 2-D models average about 10 cm3 . A 10% increase in

the exponent of the integration volume hardly seems dramatic, but its' ef-

fects on our concepts of transport are potentially confusing because, as men-

tioned earlier, all of the large-scale waves vanish in the integration. Con-

tributing to the confusion is a current controversy over the type of integra-

tion to use for evaluating 2-D model parameterizations. Recently it has become

fashionable to claim that Eulerian integrals, with their competitive component
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terms, are inherently ambiguous; only Lagrangian integrals should be used. Im-

plicit in these claims - sometimes it is even stated explicitly - is the at-

tractive but realistically unattainable assumption that Lagrangian integrals

eliminate all deviatory motions, i.e., that they describe closed systems.

To demonstrate that closed systems are idealizations for either 2 or 3-D
3

models, let us consider 1 cm as a reasonable elemental volume and a bulk sys-

20tem containie, 10 elemental volumes. For a closed system the following con-

straint must hold. If V is the velocity of an elemental volume and Vb is the

velocity of the boundary surface, then V must equal V at all points on the

boundary. Although the velocities of the elemental volumes are not completely

independent of each other their differences over the surface of the bulk volume

are large, therefore, the bulk volumes rapidly deform. Most importantly, it is

impossible to determine subsequent positions of an initially prescribed bound-

ary.

A more reasonable constraint for a Lagrangian integral, an extension of

the molecular constraint for an elemental system, is to consider a bulk, open

system whose integrated, deviatory mass flux across the boundary surface is

zero (see Appendix I for details). With this constraint the bulk system con-

serves its total mass, moves with the mean velocity, the velocity of its center

of mass, and deforms due to spatial gradients of these same mean velocities.

Therefore, in principle, one can determine both the movement of the center of

mass and the boundaries of each bulk system knowing only the mean velocities.

However, the deviatory velocities of the Lagrangian integrals remain unknown

for the same reason that they are unknown with Eulerian integrals.

Consequently, the distinction between Eulerian and Lagrangian integrals

and their associated means is not that of an open versus a closed system; rather

it is one of a stationary, completely open system versus a moving, partially
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closed system. The degree of closure depends directly on the size of the bulk

system which, in turn, depends upon the resolution limits imposed by the data

or by the computer.

THREE-DIMENSIONAL TRANSPORT BASED ON QUASI-LAGRANGIAN TRAJECTORIES

For a 3-D diagnostic or predictive model, the use of Lagrangian integrals

is equivalent to generating three-dimensional trajectories which trace out the

motion of the center of mass of the bulk systems. On the other hand, Eulerian

integrals yield a succession of streamline (or the associated stream function

and velocity potential) analyses. If the grid volumes of both integrals are

comparable in size the trajectories and the streamlines describe the same

local mean motions but from different viewpoints. Although a complete des-

cription would yield the same results, one's subjective concepts of the trans-

port could be considerably different for the two systems.

The streamline analyses tend to emphasize wave motions and laminar-like

flow, while the trajectories emphasize dispersion and turbulent-like flow. The

latter can be seen in Fig I which resembles a plate of tangled spaghetti. Ac-

tually, it represents 80 to 160 isentropic trajectories which were calculated

by a computer using programs based on the methods developed by Danielsen

(1961; 1967). Analyses of the isentropic stream function over the northern

hemisphere, north of 20 N, were made by hand. After gridpoint values were

read, coded and verified the balance equation was solved for an ageostrophic

stream function. Then trajectories were computed from the ageostrophic winds.

These trajectories have been designated here as quasi-Lagrangian because

they were based on the isentropic approximation and because the contributions

from a velocity potential were neglected. Thus, the effects of deviatory

boundary fluxes were not included in the trajectory computations and no attempt
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Fig 1. Isentropic trajectories, objectively computed on 310K surface.
Initial points correspond to odd numbered gridpoints of Fig 2a, 0000 GMT,
18 April 1963. Final points for trajectories which remain inside grid are
plotted in Fig 2b, 1200 GMT, 24 April 1963. Trajectories leaving grid are
terminated as they approach 200N latitude.
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was made to trace their moving boundaries. Instead, the local mean velocities

were used to derive trajectories of the centers of mass as if the bulk systems

were completely closed. Obviously, errors are introduced by these approximations.

For example, the dispersion along ±vO is really not zero, as assumed, but

the dispersion in three-dimensions due to vertical motions is reasonably well

approximated.

As mentioned earlier, only half of the trajectories are presented in

Fig 1 because the full complement is too difficult to decipher. However, in

this reduced set one can see examples of large dispersion, where one bulk

parcel moves rapidly away from its initial position, while its' neighbor loops

around and then moves off in a different direction. Still cthers show almost

straight line transport where the speed of the bulk parcel equals the local

phase speed of the waves.

The net effect is the conversion from an initially uniform distribution,

Fig 2a, to an extremely nonuniform distribution, Fig 2b. The initial and fi-

nal positions are identified by gridpoint numbers, with the trajectories il-

lustrated in Fig 1 being restricted to the odd numbers. In this example, ap-

proximately 1/3 of the bulk parcels moved out of the domain to lower latitudes.

The effect of this large-scale transport on the isentropic distribution

of potential vorticity is illustrated in Fig 3. The heavy line denotes the

threshold value used by Danielsen and Hipskind (1980) to define the dynamic

tropopause. Values greater than the threshold have stratospheric properties.

In this particular example, the southward extension of the tropopause boundary

from Alaska, along the Pacific coast of Canada, and extending across the

Rocky Mountains and the Great Plains, was traversed by aircraft equipped to

measure radioactivity of stratospheric origin (Danielsen, 1964 1; 1968). As

expected, very large concentrations of strontium 90 and total ,S activity were

Danielsen, E. F., Report on Project Springfield, DASA 1517, 97 pp., Defense
Atomic Support AGency, Washington, D.C., 1964.
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5 qO

Fig 3. Distribution of stratospheric values of potential vorticity on
6= 310k surface, 0000 GMT, 19 April 1963. The heavy line corresponds to the
stratospheric threshold of 1.6 x 10 deg cm2 (qs)- . The analysis is contour-
ed in units of 10-7 deg cm2 (gs)- 1 from 102 to 103 units. The heavy dashed
line corresponds to the spring seasonal mean position of the threshold value,
at 60°N latitude.
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measured over Wyoming, to the north of the extension.

It is obvious from Fig 3 that the boundary between stratospheric and

tropospheric air does not oscillate with small amplitude around the latitude of

the zonal mean tropopause. Rather, the amplitudes produced by large-scale

wave transports are very large and the pattern in the inclined isentropic sur-

face resembles a breaking wave. The trajectories in Fig 1 are consistent with

this deforming pattern and they indicate why it would be extremely difficult

to develop a 2-D model based on Lagrangian coordinates.

For example, one could define a Lagrangian average over alllongitudinal

angles c by the vertical limits 0, and 02 and the horizontal limits 5, and

where S is the potential temperature, S is the potential vorticity and the

overbar denotes a local Lagrangian average. The central axis of the zonal

average will oscillate north-south with the local mean flow, but when the

amplitudes of oscillation become large, dynamic instabilities will generate

smaller-scale waves. Then $ will not be conserved for some of the local bulk

parcels and a net transport of potential vorticity out of the zonal Lagrangian

system will occur.

Direct evidence for the nonconservation of S is obtained from the tra-

jectory analyses. For each of the 160 parcels, Swas computed every 12 hrs.

Approximately 25% of these parcels exhibited fluctuations about a decreasing

trend. An examination of these individual trajectories showed that they orig-

inated at high latitudes with stratospheric values of potential vorticity, and

terminated at lower latitudes with tropospheric values. Direct, in situ mea-

surements of radioactivity confirmed that the decrease in S was associated

with a decrease in radioactivity (see Danielsen, 1967 2).

Since S is the mean of some 1020 elemental values of S, the non-conserva-

tion of S does not necessarily imply or even require irreversible processes.

2Danielsen, E. F., Transport and diffusion of stratospheric radioactivity based on
synoptic hemispheric analyses of potential vorticity, USAEC Contr. AT(30-1)-3317,
91 pp., U.S. Atomic Energy Comm., Washinvton, D.C., 1967.



However, the intermittent transfer of energy to smaller scales tends to proceed

toward irreversibility. Thus, the large-scale deformations are the isentropic

precursors to small-scale anisentropic processes.

On the basis of these hemispheric trajectory analyses and many other case

studies, the author found Lagrangian methods advantageous for understanding the

physical processes of transport, but abandoned them for Eulerian methods when

attempting to develop an objective method for quantifying the transport in 2-D

models. As is evident in Fig 2b, the tendency of Lagrangian parcels to cluster

and decluster makes it difficult, if not impossible, to maintain a uniform

degree of resolution. Itroducing new parcels intermittently is also self

defeating. When a Lagrangian integral is extended to include all longitudes,

both the boundaries of the system and the fluxes through the boundaries must

be determined. If the system is defined to minimize the flux, the boundary be-

comes folded and difficult to locate. Conversely, if the system is defined to

minimize the deformations of the boundary, the flux becomes large and difficult

to quantify.

Nevertheless, the isentropic trajectory and vertical cross-sectional

analyses have established that the potential vorticity is a reliable scalar for

determining mean and deviatory fluxes and, therefore, a valuable aid to devel-

oping a 2-D parameterization for models using either Lagrangian or Eulerian

coordinates.

DATA SETS FOR TRANSPORT PARAMETERIZATION

Given the current and rapidly increasing interest in 2-D numerical models

for predicting the effects of trace pollutants on atmospheric ozone, the effects

of volcanic eruptions on aerosols and their radiative effects on climate, it is

obvious that a reliable specification of the mean and deviatory transports is

I
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needed. Assuming that the advantages of Eulerian coordinates will outweigh

their disadvantages, one expects Eulerian coordinates to be used in the models.

A primary requisite for specifying the transport is a representative set of

u,v and w velocity components, and their associated thermodynamic variables

at a uniform grid over the globe or at least one hemisphere.

The thermodynamic variables, pressure and temperature, are required for

computing the entropy gradients in the potential vorticity. Furthermore, the

horizontal gradients, although much smaller than the vertical gradient, cannot

be neglected because they are multiplied by the horizontal components of vorti-

city which are much larger than the vertical components. Thus, a representative

data set implies a dynamically balanced, appropriately filtered set that spans

the three-dimensional space.

J. Mahlman of the Geophysical Fluid Dynamics Laboratory (GFDL) has devel-

oped and tested such a set using the laboratory's General Circulation Model

(GCM). The author and S. Hipskind are developing a numerical, diagnostic model

to derive another set from the radiosonde observations plus the gridpoint

analyses from the National Meteorological Center's numerical prediction model.

This work, sponsored by the Federal Aviation Administration, is nearing comple-

tion and will be reported separately later. Using both data sets we will first

compare the model's velocity statistics to those derived from observations and

then compute from each set the gridpoint values for the complete transport

tensor.

The rationale developed for this purpose will be described here in consid-

erable detail because it is thought to be generally valid and physically mean-

ingful. However, to set the context, a brief review of previous work will be

presented first.
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2-D MODEL DEVELOPMENT AND RESULTANT PROBLEMS

Two-dimensional models are based on integrating conservation equations

over all longitudes. An additional integration over time, such as a month or

a season, is often made but is not essential to this discussion. Thus equations

typical of the model take the form

where ,V X and 3 are the density, velocity, mixing ratio and all sources and

sinks of species i. Since V. (V)xO the product pV can be expressed in terms

of a stream functiont. Also, since 'Xis a scalar it is customary to use first

order closure and express the deviatory fluxpV X in terms of a scalar pro-

duct of a diffusion tensor Kand the gradient of)( (Stewart, 1945). Thus,

-pV'X (2)

where the components of the diffusion tensor must be specified as a function of

y,z and t.

In one of the first 2-D numerical models, developed by the late B. Davidson,

to predict the zonally-seasonally averaged distribution of radioactive aerosols

(products of nuclear bomb tests conducted in the atmosphere) the mean circula-

tions were ignored and numerical tests were conducted to determine the appro-

priate diffusion coefficients. This approach was in marked contrast to the

earlier conceptual models of Brewer (1949) to explain the dry stratospheric

observations, and of Wolf (1942) and Dobson (1956) to explain the excess ozone

at high latitudes. Those conceptual models were focused on mean meridional cir-

culations and, generally, diffusion was neglected.

It was soon discovered that Fickian diffusion, where the off-diagonal
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components of 1 are zero, would not simulate the observed negative slope of the

radioactivity isopleths in the stratosphere. It was necessary to introduce

negative off-diagonal components and to increase their magnitude until the

isopleths had a larger negative slope than the potential temperature isotherms

O . For details of the model, the resulting simulations and prediction, see

Davidson et al., (1966).

The importance of diffusion in transporting radioactive tungsten 185

from the tropical stratosphere was emphasized, also, by Reed and German (1965),

although they stressed that, in general, both mean and deviatory transports

should be included. They used the mixing length hypothesis, deduced from

molecular diffusion or kinetic theory of ideal gases, to express the K's of (2)

as products of a mixing length (the Y' or Z' component of a displacement vector)

and the appropriate velocity component. Thus, they assumed

A Y Z (3)

and showed that

SKtz V ['Y' 
(4)

Then they made the additional assumption

WN Z'

-- _-- - (5)

which they considered permissible if the mixing length is small compared with

the size of the eddies. As a direct result of this assumption, the off-diagonal

components of (4) are equal and therefore the diffusion tensor is symmetric.

To obtain numerical estimates of and to provide a physical explanation of

the three remaining terms, K, K and K they introduced a third assump-
yy z zz-
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tion

_ - =tan D( (6)

and expressed (4) as

K4 zz K (7)

K[ zz 6 -1+Oe1
where Flis interpreted as the mean slope of the mixing surface and OC is the

variance of O(about R. For (6) to be valid O must be a small angle. Later we

shall see that Ocis not always small, therefore, assumptions (5) and (6) will

be challenged and a more general expression for (4) will be derived.

Numerical values of K and O< were determined from heat flux, temperature,
yy _

and meridional wind data while oC'2 was estimated from the vertical rate of

spreading of tungsten 185 in tropical latitudes where o =O. Reed and German

(1965) showed also that, by rotating the coordinates into the principle axis

system (which eliminated K yz), the rotation angle 'tm O( and the diagonal terms

reduce to Ky = Kyy and Kz = 001 K yy. Since Ky >> Kz, the former correspcnds

to the major axis and the latter to the minor axis of the ellipse associated

with the matrix (7).

The techniques they introduced were widely accepted and their paper be-

came the standard reference for most 2-D modelers. However, in some of these

models, developed after ozone replaced radioactivity as the potential health

hazard, little or no attention was paid to the interdependence of the mean and

deviatory motions. As shown by Kuo (1956), the mean circulations are forced by

horizontal gradients of heating and vertical gradients of frictional forces,

both of which are influenced and sometimes dominated by deviatory motions. In

particular, thermally indirect circulations, like the Ferrel cell, must be

dominated by deviatory motions. Thus, it was obvious to some that mean and
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deviatory transports could not be specified independently, and it was also

evident, from the structure in tungsten 185 distributions, that both transports

were required.

Clearly, balancing these transports in a 2-D model would be challenging.

One of the first attempts was made by Louis (1974 , who completed a numerical

model in which the mean circulations were first derived, and then the coeffi-

cients of the diffusion tensor were determined by cancelling the local change

in ozone mixing ratio produced by these mean transports. This approach is

valid wherever ozone has a chemical lifetime exceeding its' mixing lifetime.

Thus, it should be valid below 25 km and invalid about 30 km. In other words,

in the upper stratosphere the last term in (1), the source-sink term, can

cancel the net effects of the two transports, leaving both of them unconstrained

by this approximation.

Two very interesting and perplexing results were obtained from Louis' work.

When the model was tested by simulating the transport from equatorial, mid and

high latitude nuclear bomb tests, all of the transports were too fast. However,

if both the mean and deviatory transports were reduced by 50%, the results were

excellent. Since a scalar reduction of both terms would not alter the assump-

tion of a zero ozone tendency, there were two possible explanations. Either

the mean circulations were a factor of 2 too fast, or there was a missing

scalar coefficient in the transport parameterizations. Although the first ex-

planation was certainly possible it was not highly probable. Furthermore, when

Louis' unmodified mean and turbulent transports were used in photochemical

models, the poleward transport of ozone was much too slow. Reducing the

transports by a factor of 2 to match the radioactivity transport would simply

make the ozone transport even slower.

Faced by these conflicting results, modelers understandably adopted a

3Louis, J. F., A two-dimensional transport model of the atmosphere, Ph.D. Thesis,

Dept. of Astrogeophysics, Univ. of Colo., 1974.
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pragmatic approach and adjusted the transports to fit their model's predictions

of either ozone or radioactive tracers. A comparison of these transport descrip-

tions reveals large differences in the mean velocities and in the diffusion co-

efficients, not just a factor of 2. In some cases they approach a factor of 20.

Why the transports can differ so greatly and still lead to comparable results for a

particular trace constituent is another problem that needs explanation. Because the

parameterized transports depend on the mean gradients of the species, it is highly

improbable that comparable results could be achieved for all species.

In the meantime Mahlman (1975)4 was taking a different approach. Having com-

pleted a tracer experiment in the GCM he could easily generate the mean and devia-

tions of the velocities and tracer mixing ratio. Consequently, he could directly

evaluate the two transport terms in (1). His results showed a strong tendency for

the two transports to oppose each other, yielding the net transport as a small

residual of two large terms. Also, there were locations in the zonal-temporal means

where the diffusion flux was not down gradient, thus assumption (2) appeared to be

violated. Mahlman also used the two components of the deviatory flux to evaluate

the diffusion coefficients. If assumption (2) is made, there are two scalar equa-

tions and four unknowns. By adding assumption (3) the unknowns are reduced to

three. To reduce them to two, Mahlman assumed

_ - _(8)

With this asusmption Kyy, K and Kzz can be determined uniquely as ratios

of fluxes and gradients.

4Mahlman, J. D., Some fundamental limitations of simplified-transport models as
implied by results from a three-dimensional general-circulation/tracer model,
Proceedings, 4th Conference on the Climatic Impact Assessment Program,
DOT-TSC-OST-75-3B, edited by T. M. Hard and A. J. Broderick, U.S. Dept. of
Trans., 132-146, 1975.
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2. = V'x  ' arid K2

7-= I (9)

Each of these ratios has a common denominator which must be positive if the

deviatory flux is down-gradient. As indicated above, negative values were ob-

tained from the GCM results. Although negative values could prove to be

troublesome, the fact that the denominator of (9) must pass through zero is

even more troublesome. Then at least one of the K's must approach an infinite

magnitude.

However, another consequence of assumption (8) is that c'. must be

2
negligible compared to o . In other words, the deviatory flux must be effec-

tively limited to an inclined mean stream surface, an assumption used by

Fleagle (1955; 1957) to study baroclinic instability. Consistent with Eady's

(1949) principle of energy conversions with virtual displacements, Fleagle

found that a necessary condition for the amplification of a perturbation in a

baroclinic fluid was that the slope S of the stream surface must be positive

but less than the slope S of the mean isentropes, and that the maximum am-

pif'ication occurred when . Conversely, if > S or if the nega-

tive slope of the stream surface exceeded the negative slope of the mean isen-

tropes (as indicated above for the stratosphere) the perturbations were damped.

This concept was used by Newell (1961) to explain the counter-gradient

heat flux in the stratosphere, by Reed and German (1965), and by Louis (1974)
3

to parameterize the diffusion coefficients in the troposphere and stratosphere.

It also figures prominently in the work of Green (1970). In the troposphere,

where kinetic energy must be generated to account for both energy flux into

the stratosphere and dissipation of energy at the earth's surface, S must

3 Ibid.
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approach , i.e., the implied correlation between ascending motion and warm

advection, descending motion and cold advection, must reduce the local change

by advection. Indeed, at 500 mb the observed local change in temperature is

about one-half of the observed advective change. Thus, there is observational

and theoretical evidence to support Mahlman's assumption (8) which implies

that the wave motions are linearly polarized, but Fleagle's (1957) results

indicate that the unstable waves will become elliptically polarized and there-

fore 0(,2 will grow. Again, we are confronted by an apparent inconsistency

that remains to be resolved.

Last, but not least, a new challenge to the use of a diffusion tensor for

elliptically polarized wave-particle velocities was raised by Wallace (1978).

He asserts that the stream surfaces in the lower stratosphere will have posi-

tive slopes, not the negative slopes assumed by the previously discussed

authors, and attributes the meridional counter-gradient fluxes to Stokes

drift . Large-scale waves in the lower stratosphere-are assumed by Wallace to

be evanescent; amplitudes decreasing with height and with distance north and

south of an axis of maximum amplitude. He then deduces from the kinematics of

the elliptically polarized velocity distributions a mean particle drift down-

ward to the north of the axis and one upward to the south of the axis. The

combined, torque-like action of these two drifts is claimed to be responsible

for the counter-gradient fluxes. However, these drifts are apparently isen-

tropic since Wallace explicitly neglects diabatic cooling and makes no mention

of irreversible small-scale mixing.

1Stokes drift is a mean particle drift or streaming velocity produced in a homo-

geneous fluid, i.e., in the absence of a restoring force, by amplitude gradients

of elliptically polarized isentropic wave motions.
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MEAN CIRCULATIONS: STREAMLINES OR TRAJECTORIES

When large-scale, quasi-horizontal wave motions in the atmosphere have a

definite axis of maximum amplitude, it will generally correspond to the axis

of a jet stream. Now, it is well known that when velocities are averaged

longitudinally and temporally (not at constant latitude but at a constant dis-

tance from the axis of a jet) the resulting mean circulations are direct like

the Hadley, not indirect like the Ferrel cell circulations. After Fultz and

Riehl (1957) determined a direct circulation from their annular dishpan experi-

ments, Krishnamurti (1961) showed that the subtropical jet had a similar circu-

lation. Later, Mahlman (1973) found that averaging relative to the polar jet

also yielded similar results.

These jet rectified-circulations in the northern hemisphere include ascend-

ing motions along the entropy gradient on the anticyclonic (south) side of the

jet, northward flow along the potential vorticity gradient above the jet core,

then descending motion against the entropy gradient on the cyclonic side, and

jet core. Although the upward and downward branches are similar in sense and

location to the mean drifts deduced by Wallace (1978), they cannot be attri-

buted to isentropic processes.

In addition to having different characteristic values of potential vorti-

city, the upward and downward branches have different concentrations of trace

5constituents. As shown by Danielsen et al., (1962) , radioactive isotopes

measured from aircraft during the spring of 1960 were predominantly of strato-

spheric (tropospheric) origin when measured on the cyclonic (anticyclonic)

side of both the polar and subtropical jets. In particular, strontium 89 and

barium 140, produced in the troposphere by a specific bomb test, were present

in large concentrations on the anticyclonic sides but were either absent or

5Danielsen, E. F., K. Bergman and C. Paulson, Radioisotopic potential temperature and
potential vorticity - a study of stratospheric-tropospheric exchange processes,
Dept. of Meteorology and Climatology, Univ. of Washington, 54 pp., 1962.
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below detectable limits on the cyclonic sides.

These data suggest that such jet rectified mean circulations are not

closed Lagrangian circulations, i.e., they do not represent the trajectories

of air parcels, even bulk, semiclosed air parcels. An air parcel crossing

above the axis of the jet must change its potential vorticity and trace

constituents too rapidly to be compatible with small-scale mixing with the

parcel's environment. On the other hand, there is ample evidence that the

descending branch of the circulation is Lagrangian or quasi-Lagrangian.

One example comes from the same, above mentioned aircraft experiment.

When the measured concentrations of strontium 90, tungsten 185, and

berylium 7 were plotted versus 0 as the ordinate and S as the abscissa, the

strongest concentrations of each isotope were almost independent of e over

the entire observational range, 325 to 390°K and 10 to 15 km in height.

Although all three isotopes are considered as stratospheric tracers, we know

most explicitly the initial conditions for tungsten 185. It was introduced

as a tracer in the tropical Hardtack series (summer of 1958) and aircraft and

balloon measurements showed that its maximum concentrations were from 380 to

4800K in e and from 16 to 20 km in height.

Obviously, the tungsten moved downward in elevation as it moved north-

ward from the tropical latitudes, but it is equally obvious that it did not

descend isentropically. Like the descending branch of the jet rectified mean

circulation, the tungsten crossed the 0 surfaces towards decreasing values,

equivalent to a net cooling of 60 to 800 K in potential temperature, on the

cyclonic (north) side of the major jets. Therefore, the radioactivity data

indicate that the descending branch of the jet rectified circulation represents

a material drift, but it cannot be attributed to Stokes drift.

When air parcels move isentropically along elliptical paths, their vertical
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displacements are limited to those of the entropy surfaces themselves. There-

fore, when mean circulations cross mean entropy surfaces but the parcel mot-

ions are isentropic, the mean flow lines are streamlines connecting the veloci-

ties of different air parcels (each having a different entropy) and no indi-

vidual parcel follows the streamlines, even under steady state conditions.

Thus, the entropy gradient precludes a material cross-entropy drift develop-

ing from purely isentropic motions.

The downward transport of the stratospheric tracers requires an addi-

tional diabatic cooling gradient and/or small-scale, irreversible mixing.

When diabatic cooling increases with latitude the isopleths of the trace spe-

cies will rotate relative to the mean isentropes in the required sense. How-

ever, to maintain the observed positive correlation between the trace species

and the potential vorticity, must be much smaller than the meridional

gradient at constant19. In particular, these conditions are deemed necessary

-L
to explain the large deviations between S , the synoptic or local mean, and
-2

the zonal-seasonal mean of potential vorticity shown in Fig 4. For the

synoptic cross-section of potential temperature and wind speed, plus the cor-

relation with ozone, see Danielsen (1968).

-L -Z
At high latitudes S oscillates about S so closely that only one set of

isopleths is labelled. However, above and to the north of the almost merged

-L
polar and subtropical jets, $ oscillations are very large and, consequently,

-L -=.
the deviations - are also large. Between Tallahassee (station 72214)

and Bedford (station 72490) the 5 = 800 isopleth drops 10 km in elevation

and decreases 150 K in G (from 476 to 325 K).

Those large deviations in height and 9 greatly exceed the height and

range of the S = 800 isopleth from 20 N to the pole. Therefore, they cannot

be explained by horizontal displacements of the zonal mean values. In parti-
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cular the = 1600 maximum at 10 km over Bedford is more than 5 km below the

minimum elevation of the zonal mean and approximately 750 colder than the mini-

mum 0 of the zonal mean. Furthermore, this 1600 maximum could not have been

generated locally by a vertical gradient of G because the ozone deviationsat
correlate with the potential vorticity deviations. The physical explanation

offered by Danielsen et al., (1962)5 and the schematic diagram of the circula-

tions (Fig 16 of the same reference) still appear to be valid. They attri-

buted the decreasing entropy transport primarily to radiative cooling over the

cold cirrus cloud shields, above and to the north of the jet axis, and depicted

the ascending and descending branches as separate Lagrangian flows which mix

actively in certain regions, but which do not form a closed Lagrangian circula-

t ion.

Although an isentropic Stokes drift might represent the difference between

the constant latitude mean circulations and the jet rectified mean circulations,

it does not appear to be responsible for the negative slopes of the mean or

synoptic isopleths of stratospheric trace species concentrations.

ANALYSES OF THE DEVIATORY VELOCITY TENSOR

To test this conclusions, gridpoint values of the velocities for one

January realization of the GFDL's general circulations model were analyzed.

Granted, one realization is not sufficient, but it was thought to be necessary

and it provided a basis for program development and for future comparisons

with objectively derived velocities from synoptic data. At four pressure

levels - 38, 65, 110 and 190 mb - and tnree latitudes - 24, 48 and 720N - the

u,v and w gridpoint values were averaged and subtracted from the grid values

to determine the deviations. Then the following terms in the deviatory veloc-

ity tensor were computed.

5
1bid.
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IV WW WO o lw° o

In the central matrix array, represents the angle between the

principle axis of the associated ellipse and the v or y axis, and /5is the

ratio of its minor to major axis. Note that the determinant of the central

array is equal to 5, and in the principle axis system the off-diagonal

elements are zero and the diagonal elements are 1 and A .

The matrix array on the right has special significance, especially for com-

puting and interpreting the deviatory velocity tensor. We can think of the as-

sociated ellipse as being generated by a single wave whose components are

IV = V( C(a)

w=w ,Cos (4±J 0') (11b)

where + denotes the longitudinal angle and is a relative phase angle. By

forming the appropriate products from (Ila) and (11b), and integrating over all

longitudes, it is readily shown that the matrix array on the right of (10) is generated.

The significance of this equivalent monochromatic wave is revealed by ex-

panding v' and w' in a Fourier series, forming their products and integrating

over all longitudes. Since only a relative phase angle is important, let

V@ = Z V(n) Cos Me (12a)

cas (j44CO +4 ) (12b)

then, for example
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v 1I=Lv*rfVW() CDs4~ VoWO -Cos5
M 9 2 (13)

and all terms with/A YVMvanish. Therefore, .V'V'- can be represented by

,V.V. which is the kinetic energy density of the meridional deviatory motions.
2

Also, since V>>W,, we can consider it the kinetic energy density of the

deviatory motions.

It is clear from (13) and (10) that the deviatory velocity tensor can be

written as the sum of the wave number tensors. Also, the equivalent ellipse

can be expressed as the sum of the individual ellipses associated with each

wave number. This result is very convenient because it is easy to evaluate

the Fourier coefficients and the relative phase angles. The relative phase

between v'(m) and w'(m) determines the properties of the ellipse. From the

equality of the determinants of the central and right matrix arrays (10), it

can be shown that

W. ~ ) S2  c (14)

therefore, if c-0, the minor axis of the ellipse vanishes and the veloc-

ities are linearly polarized. Furthermore, since cos 4 then equals 1, the

right matrix depends only on v0 and w0 . Thus, t = O, is equivalent to

Mahlman's assumption (8), and 'j =-. In this case, Reed and German's inter-

pretation of o1 as the mean slope of the mixing surface is unambiguous.

However, when the velocities v° and w° are elliptically polarized.

This mean that at some longitude, w' will be finite when v' = 0, thus

violating Reed and German's assumption that 0 is a small angle. On the other
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hand, is a small angle and it, notO(, defines the mean slope of the mixing

surface. Therefore, , the principle angle of the ellipse, is the relevant

angle for the general case.

Four examples of the individual wave number ellipses and the total ellipse

are presented in Fig 5, along with the gridpoint values from which they were

derived. In each example, the v', w' points scatter about an ellipse whose

major axis slopes downward towards the pole. Also, it can be shown that

these slopes exceed the mean slope of the G surfaces at the same gridpoints,

thus a counter-gradient heat flux is implied.

This evidence does not support Wallace's assertion that the ellipses will

have a positive slope in the lower cyclonic stratosphere, nor does it support

Mahlman's implicit assumption of linear polarization. Conversely, it does

support Newell's interpretation and the inclusion of 42 by Reed and German,

and by Louis. Note, however, that 0<.z must be interpreted via/5 as de-

scribing the departure from linear polarity. That such departures can be

large can be seen in Fig 6, which illustrates the ellipses at 65 and 190 mb

and 24°N. Both ellipses have small positive 'S and are quasi-circular in

these plots. Of course, the wiscale is distorted by about 400 to 1, but this

is a realistic distortion for the atmospher, asymmetries. The positive

slope at 190 mb is expected because it is in the mean troposphere, south of

the extra-tropical jet. The slope at 65 mb is too small to be significant,

meaning that v'w' is small because t1/z. In this case it is 870.

Figures 5 and 6 clearly demonstrate the prevalence of elliptical polarity

between v' and w'. But they indicate, also, that the component wave number

ellipses can differ significantly from each other. In general, when (m's

include both positive and negative values, the scatter of the v', w'

points about the equivalent ellipse is large and it has small eccentricity.
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There is evidence, also, of linear polarity for some wave numbers. In this

respect, the plot for Fig 7, 100 mb and 240N, is particularly interesting.

Wave numbers 2 through 5 are all linearly polarized and all have positive slopes.

This gridpoint is located in the lower, anticyclonic stratosphere where the

6 isotherms have a small negative slope. Therefore, the linear polarity and

positive slopes for ' imply the local change in 0 exceeds that due to advection,

and warm (cold) advection is correlated with descending (ascending) motions.

It remains to be seen whether this result is an artifact of the model or if the

atmospheric diagnostic analyses will confirm it. If it is confirmed, it has

important implications for tropospheric-stratospheric exchange at subtropical

latitudes.

PHYSICAL SIGNIFICANCE OF AN ASYMMETRIC TENSOR

In a review article on stratospheric transport, Danielsen and Louis (197

showed that transport by mean circulations could be incorporated into the

diffusion tensor, but that the generalized tensor would no longer be symmetric.

This result follows from the condition mentioned earlier, that 0" 0

and, therefore

(15)

where is a stream function for the mean momentum density and j is a unit

vector in the zonal direction. ThEn, by use of vector identities, one can

write

\h(~V0 V ~ J * ~ (16)

When this antisymmetric tensor is added to the diffusion tensor, the entire



36

transport is specified by a single asymmetric tensor

-VI (p=__%) V.7LK1  (17)

The next and crucial question is whether K zy= K yz . If they are not equal,

their mean value will contribute to a symmetric tensor and their differences

will contribute to the antisymmetric tensor. In other words, if they are not

equal, the mean flow will be modified, since it ib represented by the anti-

symmetric tensor.

Sommerfeld (1950), in discussing antisymmetric tensors, stresses that they

can be represented by axial vectors. The curl operator (15) generates an

axial vector, thus, the stream function and the vorticity associated with it

should appear explicitly and implicitly, respectively, in the antisymmetric

part of the tensor. Indeed, the mean circulations do represent vorticity in

the zonal direction since

VXVX -V72  (18)

The mean flow expressed in terms of in (17) is the Eulerian mean, part

of which is derived by diabatic, irreversible processes and part by isentropic

processes. If the latter are significant, the stream function associated

with them must be subtracted from the former and, therefore, Kzy 7 Kyz .

In a recent work by Matsuno (1980). this conclusion follows as a neces-

sary condition for consistency with his assumption. That is, he analyzes the

highly simplified case of a single, vertically propagating planetary wave

(no. 1), which is locally stationary in a barotropic, channel-type mean flow.

But, this simplicity permits him to obtain analytical solutions to the transport
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which are very revealing. In this author's opinion, they provide the key to

the resolution of most (perhaps even all) of the above noted problems.

The key is Matsuno's (1980) generalization of the mixing length hypo-

thesis. By introducing a mixing time Z defined by

X/- (19)

assumption (3) is replaced by an integral

0

f_ Z (20)

where Y' and Z' are now functions of time.

In particular, if they are harmonic functions of time, oscillating with a

single, circular frequency W and describing elliptical paths, as they are in

his idealized example, the flux vector he derives is

-VX= LIQK,'-5± I2 Kj -V-% (21)

where IK denotes a symmetric tensor, similar in form to that of Reed and

German (1965) except that it describes the effects of wave number I only, and
I

KA denotes an antisymmetric tensor whose divergence acts to oppose the mean

flow. The most revealing parts of this result are the scalar weighting factors.

W_ '1
-  (22)

To be rigorously consistent with his model assumptions, which include no mix-

ing processes and no diabatic heating, T, must be infinitely large. Then
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vanishes, 1 and the trivial solution 0 is achieved. The vanishing of

is consistent with no mixing processes and when the negative of the

Stokes drift cancels the mean circulation. It should, for in the absence of

frictional forces and diabatic heating, the only contribution of the mean

circulation is that due to Stokes drift.

On the other hand, if v is finite due to chemical-photochemical reactions,

then there will be a net transport which must be counteracted by the source-

sink term in (1) to maintain steady state. By relaxing his initial assumptions,

Matsuno estimated t C10 7 sec, attributing it to smaller-scale mixing and/or

chemical processes. Under these circumstances, i I0-2 and tC 1. There-

fore, he concludes that, "the eddy transport is advective rather than diffusive

in nature and, in effect, it represents transports due to Stokes drift."

We will return to this conclusion later because these are reasons for

rejecting his value of I as being much too large. Therefore, although we can

disagree with his conclusions, we can profit by his generalizations of the

diffusion approximation.

METHOD FOR DETERMINING ASYMMETRIC DIFFUSION TENSOR

Given a set of u,v and w velocities, the zonal means u,v and w can be

readily computed and, from the meridional-height distribution of pVand7W

a stream function can be derived. Then, from u'v', v'w' and w'w', as shown

in (9) and (19), the equivalent velocities v and w plus the relative phase0 ,

angle k can be evaluated. Associated with these velocities will be some, as

yet unknown, equivalent U). Therefore, if we generalize (11) as

v' =vo cos (wot+ W) , w'=w cos( Wo 4 (23)

the associated displacements from the origin are
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w e o ( , , Zlw. [sO(wot+4.)-sn 2] (24)
where U0W

+ (25)

If (24) are substituted into (20) and integrated

_V.O )C Co Siqj].!- IYe Ax os t+ sinc11 (26)

Next, multiplying (26) by (23), after setting t = 0, and then integrating over

all longitudes (here and 01 are functions of longitude) one obtains

2 1 + 2 - .W (27)

2 21

In (27) all terms involving ,5,V 0 W. and can be determined from the re-

presentative data set, as can, ande. Thus, (27) includes two scalar

flux equations and contains two unknowns, -L and .-. Both unknowns have di-
WO ( WO

mensions of time and we can denote the first by TI. However, it will be con-

venient to factor out the common term in the antisymmetric tensor and set the

second unknown as a stream function for the oscillatory motions, i.e,

d1~.. pO~WO Sin~ (28)

With this notation (27) becomes

1 I
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[V.V. V. WCO[Q ]
,PV' X {P + 21Ti 14' J (29)

where T and are now the two unknowns.

The solutions are

p)Z - -V (30)

~( 0  2 vx Cos~ LW.K~V

and

2 - t OT (31)

where IS is the symmetric deviatory velocity tensor defined by (10) and (29).

It is analogous to the Reynold's stress tensor, the latter being defined for

temporal rather than zonal averaging.

Equations (27) to (31) have many interesting implications.

1. A solution exists unless VX.K;VXgoes to zero faster than the

numerator of (30) and (31). When integrated over the entire atmo-

sphere this scalar product must be greater than zero because it

equals -- , which must be positive as X decreases towards its

minimum, a uniform distribution. It may, however, be very small or

slightly negative at some latitude or height and, if so, a lower limit
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on the denominator must be used to maintain computational stability.

2. The numerator of (3) is the same as the common denominator for

Mahlman's Kyy, Kyz and K coefficients. Because -VIX I V X

appears in the numerator instead of the denominator, the effect of a

deviatory flux being approximately orthogonal toVXapparently is

not serious. Also, there appears to be no inherent difficulty with

an upgradient flux ( V 9'XVX >0 ) providing that the divergence

of the antisymmetric tensor compensates for its local concentrating

tendency.

3. Reed and German's (1965) approximation is included also in (27) and

(29) as the limiting case W0-*0 for a finitery.. This result is

obtained from (22) by dividing §1 and h. by W. and passing to the

limit. Then

_fV ,v /5 TV~ (32)

The same result is obtained by setting W,= 0 in (23) which yields

Y'_- O Co4t and Z and then evaluating (20) with

these linear displacements. Obviously this limiting result is un-

realistic for the atmosphere but, of course, one need not pass to the

limit for realistic applications of their approximation. Whenever

the mixing period S, is small compared to the oscillatory period

associated with t) the approximation is reasonably valid despite

the prevalence of elliptical polarizations. From this viewpoint, it

is a more general approximation than Mahlman's, but because both

methods eliminate 0 there is reason to question their general appli-

cability.

4. Adapting Matsuno's (1980) concept of a mixing timer provides the

additional insight that the mixing length hypothesis can be applied
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to 2-D models, but the vector displacements must be corrected for

elliptically polarized wave motions. In other words, the history of

the air parcel's trajectory is important unless the effective mixing

time is very small compared to the effective wave period. This

correction for the parcel's history is reminiscent of that required

for elastic collisions in molecular diffusion (Jeans, 1925).

5. Equation (27) may also resolve the perplexing results obtained by

Louis (1974)3 . Reference to (22) shows that = when

LO~ Z 1 1. If, as indicated by Matsuno (1980), o does tend to can-

cel 4 then both the Eulerian mean circulations and the effects of the

symmetric tensor would be reduced by approximately 50%. On the other

hand, in the middle and upper stratosphere, where the diabatic forc-

ing increases in magnitude, Y could dominate and perhaps be reinforced
rather than opposed by the deviatory advections (see next section).

6. IfT" becomes very small due to photochemical processes, both and

--# 0. Then the local change in a trace species is comparatively

insensitive to transport. However, other than a loss of computer

efficiency, there appears to be no logical difficulty in maintain-

ing the transport computations. In principle, it seems preferable

to do so and to consider only mixing processes in evaluating t;,

relying on proper descriptions of the chemical sources and sinks to

account for the chemical lifetimes.

PHYSICAL SIGNIFICANCE OF THE DIVERGENCE OF THE TRANSPORT TENSOR

In the above discussion we have considered mainly the properties of the

asymmetric tensor and how its components could be determined from a representa-

tive three-dimensional data set. However, in a 2-D model it is the divergence

3
Ibid.
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of the tensorial product that determines the net contribution by transport pro-

cess to the local time rate of change, therefore, the spatial gradients of the

tensor's components are possibly as important as the components themselves.

In particular, differences in the effects of the spatial gradients perhaps

could explain why similar results are obtained from models whose diffusion

coefficients differ drastically in magnitude.

To clarify the physical significance of the divergence of the tensor

product we will first write the flux in its general form

AVX+Vr ,KV;X (33)

where KSz=KSz+ ,Kz4= - ' and )=J+ . Then the di-

vergence of (33) can be written as

IV. -X - [ ) vXK*]] - ~I V% (34)

In this form, the first term on the right represents an advection and the

second a diffusion of X, with both processes being weighted by the mean den-

sity. Thus, for example, ifp were constant the divergence of would des-

cribe an equivalent advection velocity which would include the rotational

mean velocity V and an irrotational velocity associated with the deformations

and divergence of the deviatory motions.

If, for simplicity of notation, we expand (34) in cartesian yz coordi-

e'ates, the two terms including the density weighting can be identified as

advective k -z A _ L__Ow KZ 7( (5



44

diffusive K -(K + ;±K [ 9 ) +KX x] (36)

It is now clear from (36) that the stream function 4 will cancel in

the central term, therefore, only the symmetric tensor contributes to the

simulated diffusion, but from (35) one can see that both antisymmetric and

symmetric tensors contribute to the advection. In consideration of this dual

role it seems appropriate to call K a "transport" rather than a "diffusion"

tensor.

Also, from (35) after the stream functions and the expression (29) for

the symmetric tensor are introduced, the effective meridional advection veloc-

ity

Vef T (37)

and vertical advection velocity

W )+ CT\W COs45 (38)

Here, to refresh one's memory, and w are the Eulerian mean velocities,

computed directly from the gridpoint values of v and w, while v. and w s symbol-

ize the mean velocities attributed to Stokes drift, those derived from gradi-

ents of -e" Presumably the latter velocities will have signs opposite to the

former and, therefore, act to reduce the Eulerian mean circulations. However,

(35) - (38) clearly imply that the divergence of the symmetric tensor can also

effectively augment or oppose the advection by Eulerian mean motions.
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Furthermore, although (37) and (38) contain many variables, some of the

dominant terms can be easily deduced and interpreted. For example, when f-1

is small, the meridional gradient of deviatory kinetic energy density will

produce advections that are directed away from the energy density maximum.

Since the low wave numbers dominate the energy density, they are mainly re-

sponsible for the meridional deviatory advection. Also, in the tropics, where

w and cos 0. are probably small, the vertical gradient of the vertical devi-

atory kinetic energy density can modify the vertical advection. Thus, the

amplitudes of Kelvin and gravity modified Rossby waves become important to

tropo spheric-strato sher ic exchange.

Finally, both the advective and diffusive effects of the complete spec-

trum of internal waves depends directly on T1 . If T1 is small, these irrevers-

ible effects are negligible and the wave transports are essentially reversible.

Since T1 is small when the product W.o% is large, the effective mixing time

plays a critical role in the parameterizations. It is difficult to estimate

the magnitude and the spatial gradients of t 0.- On the basis of the measure-

ments of strontium 89 and barium 140, products of the first French nuclear

5
bomb test in the Sahara, Danielsen et al., (1962) deduced a value of the

order of a few days. A similar range of values was deduced from the dilution

of strontium 90 and potential vorticity during Project Springfield

(Danielsen, 1968). However, Staley (1957) and more recently Shapiro (1978)

have estimated smaller values, approaching the order of half-a-day. Certain-

ly, in regions of wave induced turbulence or cumulonimbus entrainment, the

mixing times can be of the order of minutes. Since the effective To can be

computed from TI and 4), it will be interesting to see what values are obtained

from this objective method.

In any case, it is intuitively satisfying to discover from the method that

5
1bid.
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the large-scale waves are predominantly responsible for transport potentials,

through their amplitudes and reaitive phases of meridional and vertical veloc-

ities, while the small-scale waves, which are more directly responsible for

irreversible mixing, control f, and, therefore, the realization of transport

potentials.

SUMMARY

With the growing interest in and development of zonally averaged models,

there is a corroborative need for an objective, statistical description of the

fully three-dimensional transports. In general, these models will be based

on Eulerian coordinates. The major disadvantage of averaging over fixed spa-

tial coordinates is that the grid volumes represent completely open systems.

Thus, integrals which extend over all longitudes completely eliminate all non-

zero Fourier wave modes. That is, transport by the complete wave spectrum

must be described statistically.

On the other hand, it is shown that Lagrangian integrals suffer from a

much more serious difficulty. Data limitations preclude completely closed

systems, but they can be partially closed, i.e., closed to all resolvable

scales of motion. However, then the boundaries of the system deform, twist

and fold. The deformations start with large-scale motions and proceed inter-

mittantly to smaller and smaller scales. Consequently, either the boundary is

difficult to locate or the deviatory fluxes across the boundary are difficult

to objectively determine.

A major advantage of the Eulerian average is that the local change in

due to transport reduces to two terms,V'pVX +VX', the convergence of the

mean flux and of the mean of the deviatory flux, which can be objectively deter-

mined from representative meteorological data. If the velocity and X are ex-
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panded in a Fourier series, the products of wave number zero determine the

mean flux and the mean of the deviatory flux reduces to the sum of the pro-

ducts for each nonzero wave number. All products between nonequal wave num-

bers vanish.

Taking advantage of this orthonormal property, the density weighted, de-

viatory velocity tensor V'V'can be expressed in terms of an effective

ellipse whose major axis squared is the mean kinetic energy density of the

meridional deviations and whose minor axis squared is the mean kinetic energy

density of the vertical velocity deviations multiplied by the sine of the mean

phase angle k@ between v' and w'. Also, the slope of the major axis is pro-

portional to the cosine of the same angle 4).
This analysis method applied to velocity data from the GFDL's GCM de-

monstrates that the slopes of the major axes are negative in the cyclonic

middle and lower stratosphere, in support of Newell's (1964) interpretation

of a counter-gradient transport for ozone and heat. The same analyses show

that elliptical polarization is characteristic of the small wave number modes,

those which have the largest amplitudes, and that the amplitudes vary with

latitude, so that a contribution to the mean circulations by Stokes drift is

probable. As shown by Matsuno (1980) this contribution would appear as an

antisynimetric tensor in the statistical description of the transports.

The symmetric part of the tensor is essentially the product of the

density, a time constant, and the Reynold's stress tet. 1. The antisymmetric

parts include the stream functions for the mean circulations and for contri-

butions due to Stokes drift.

To evaluate the components of these tensors requires a representative set

of u,v and w velocity components and an appropriately balanced set of thermo-

dynamic variables to permit representative computations of potential vorticity.
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Given such a set, either from numerical diagnostic or predictive analyses,a

method for reducing the problem to two equations and two unknowns is presented

and discussed. Work has begun to analyze both types of data to obtain solu-

tions, twice daily or four times daily. Later these solutions will be tempo-

rally averaged.

The asymmetric tensor has been called simply a transport tensor because

the divergence of the tensor-vector inner product includes both advection and

diffusion ofX. Of course, it includes advection by the meanV velocities, the

rotational velocities, but it includes also advections by irrotational

deviatory velocities. Thus, for example, important advections result from

spatial gradients of the deviatory kinetic energy density.

In the absence of the essential data set there are a large number of

degrees of freedom for tuning a model's transport coefficients. Consequently,

the current lack of unanimity among 2-D modelers relative to transport speci-

fications is understandable. However, for a generally valid set, applicable to

many tracers, the degrees of freedom should be effectively eliminated as the data

sets are generated and processed.
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APPENDIX I

A generalization of Leibnitz' formula for transforming from the time de-

rivative of a moving integral to the integral of a partial time derivative can

be written in the following form:

D JV-=L +VV)fxdv= fL JV + VX -dA(1)

where V s  is the velocity of the bulk system, VB is the local velocity of its

boundary and dV and dA are its differential volume and surface area, respec-

tively.

For Eulerian integrals, V s and VB = 0, therefore, the bulk systems are

stationary, completely open systems of constant volume. The conservation equa-

tions for mass, momentum and energy density can be integrated over the volume

to yield the appropriate bulk equations.

For Lagrangian integrals the total or bulk mass is constant, but there

are two possible solutions. If X =p substitution of the mass conservation

equation into (1.1) yields

-M!f(v-v).dA=o

If V=V the system is closed for all but the molecular motions, but it is

physically impossible to determine the three-dimensional velocities of the

boundary. An alternative approach is to set VB = V, a continuous function of

the spatial coordinates, where V is the density weighted mean for the bulk

volume

V= PV f, (1.3)

. . . .... 
"... ... ...

" iI
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Then with V = V + V' equation (1.2) becomes

NAL ijV .JA= V-Jvlv'v=V PVfWv 0 (1.4)

In this case the system moves with the velocity of its center of mass, remains

contant in mass, but is open for all scales of motion smaller than that de-

fined by the averaging volume. Thus, for example, the bulk or mean momentum

equations are, for the Eulerian integrals

-+-VVV = -VP fK~ V. ~'+O](5

and for Lagrangian integrals

D__- - ~ ~V\ - v-[pv'+ ~3(1.6)-t A-

where p, 3 and f are the pressure, vector acceleration of gravity and the

vertical component of the earth's vorticity, and C is the molecular stress

tensor.

Equations (1.5) and (1.6) are equivalent in the sense that to follow the

bulk systems one needs to know the spatial, temporal distributions of V and,

in general, the correlations between the deviatory velocities, although differ-

ent for the two systems, remain unknowns.

a'
S-.----.
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PART II

NUMERICAL DIAGNOSTIC 14ETHOD
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INTRODUCTION

As discussed earlier, the atmosphere's asymmetry prevents direct measure-

ments of both the important vertical velocities and the ageostrophic horizontal

velocities which generate them. We have no alternative but to compute them

from the basic hydrodynamic equations using the available, incomplete and

partially distorted observations. A reliable analysis method must compensate

for these two data deficiencies and also produce representative vertical veloc-

ities. Because the radiosonde and rawinsonde stations are mainly located on

the large continents, the data density over the oceanic regions is too low to

permit use of most analysis methods. Instead, special techniques which utilize

time continuity are necessary for hemispheric or global analyses.

In hand analysis methods, time continuity charts are used to extend the

analyses over the oceans. One relies on the principle that the lifetime of

the large-scale features is longer than the transit time between adjacent

stations and one uses pattern recognition to identify and adjust the features

on the individual analyses. These techniques can be used to test objective

numerical methods but they are difficult to simulate by computer algorithms.

Instead, we take advantage of the constant pressure analyses produced by

the National Oceanographic and Atmospheric Administration's Numerical

Meteorological Center (NMC), and available on tapes at the National Center for

Atmospheric Research. These rectangular i,j gridpoint analyses of geopotential

height and temperature are a blend between numerical predictions and observa-

tions, thus time continuity is imposed by the dynamics of the numerical pre-

diction model and adjustments are made when the observations indicate that

there are systemmatic errors in the predicted patterns.

Direct comparisons of the NMC analyses with hand analyses indicated that

they were usually good at mid and high latitudes, but often contained spurious
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cyclones and anticyclones at low latitudes. These results are reasonable be-

cause the low latitudes have the largest data gaps, the poorest data density.

Nevertheless, it was necessary to eliminate them and special techniques were

developed to do this objectively. Of course, there is no substitute for data

and, therefore, the results are least accurate at low latitudes. In particular,

the tendency will be to suppress variability in these regions by relying more

on monthly means than synoptic values of height, temperature, moisture and

wind components. Computations of the variability at the individual radiosonde

stations support this philosophy. The tropical stations have the smallest

variability.

GENERAL OBJECTIVES OF THE METHODS

The primary objective of the diagnostic method is to derive representa-

tive, dynamically balanced, ageostrophic winds, vertical velocities and

thermodynamic scalars at a uniformly spaced grid over the northern hemisphere.

All computations are made in isentropic rather than isobaric surfaces to take

advantage of the isentropic constraint as a reasonably accurate first approxi-

mation to reality. This constraint decouples the individual entropy surfaces

permitting each surface to be treated separately. After these analyses are

completed, the isentropic constraint will be relaxed and the complete set of

isentropic surfaces will be linked by solving Poisson type equations in

three dimensions. The discussion here will be limited to the isentropic ap-

proximation.

Decoupling the solutions is a distinct advantage because the three-

dimensional velocities are reduced to two horizontal components in the coor-

dinate surfaces plus the vertical velocity of the surfaces. The latter can

be derived from the horizontal velocities and the thermodynamic variables.
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Therefore, we can derive a stream function and velocity potential describing

the ageostrophic winds from the Montgomery stream function on each entropy

surface by solving Poisson type equations in two rather than three dimensions.

An iterative method is used to first compute a stream function from the

geostrophic vorticity, then the vorticity equation is solved for a generalized

velocity potential, whose Laplacian includes the advection of vorticity by the

divergent wind plus the vorticity weighted divergence on the entropy surfaces.

After solving for the divergent wind components, the balance equation is solved

for a new stream function which now includes super- and subgeostrophic ro-

tational components. Then, finally, using this stream function the vorticity

equation is resolved for a new generalized velocity potential.

In these computations successive gridpoint analyses are used to evaluate

the local time derivatives. Since the data are available at 12 hr intervals

a central 24 hr difference is used. This time differencing is equivalent to

applying a temporal filter which completely eliminates all waves with periods

1 day. We would prefer to have dataevery 6 hrs, but consider temporal fil-

tering much better than spatial filtering for our purposes.

Being interested in atmospheric transport, especially stratospheric-

tropospheric exchange, we knew from previous tests that spatial filtering in

isobaric coordinates tends to suppress or eliminate the strongly asymmetrical

structures associated with tropopause folding. On the other hand, temporal

filtering in isentropic coordinates does not eliminate these structures because

their lifetimes are of the order of several days and the asymmetry is mainly

due to large gradients orthogonal to the entropy surfaces. Thus, use of

isentropic coordinates provides the additional advantage of retaining higher

order spatial resolution when the solutions are transformed to x,y,z space.

After the stream function and velocity potential are determined, the
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equations of horizontal motion are solved for a new Montgomery stream function.

This step assures that the thermodynamic scalar fields are dynamically consis-

tent with the wind fields and with the temporal filtering.

Having determined a new Montgomery stream function, M we know the

specific energy on each entropy surface but not how it is partitioned. Since

+M r P~T * Z (2.1)

is the sum of the enthalpy and the geopotential energy per gram, we need to

separately determine the two specific energies. In (2.1) c is the specificP

heat at constant pressure, T is the virtual temperature, g is the accelerationv

of gravity and z is the height of the Gasurface.

To separate them we differentiate the +M solutions at each gridpoint by

the logarithm of the equivalent potential temperature, i.e.,

' =~ -CPT~ (2.2)

Then it is a simple matter to determine z, the height of the &V surface and,

finally, from the total derivative to determine the adiabatic vertical veloc-

ity Wad. This completes the analysis method for the primary variables and

permits a direct computation of the quasi-conservative scalar variable, the

potential vorticity.

The potential vorticity, defined by

s=oV ,~[v xV + 2a1] (2.3)

can be expanded in x,yz coordinates, as

*1 ___________
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3- x ) x 4 - 4)(2.4)10 10( {(" ' ) ]0 i0-(16, 1-, I- 4 ) 10 64( -4O 10

where 0 is the specific volume and f,X are the vertical, horizontal components

of 2, the earth's vorticity. Retaining the dominant terms, we reduce this to

LoyAV v Z 1e)_ ()U 6 1 (2.5)

which is identical to

S Z ( _ ) -9 = 1, +0(2.6)axZ Z e

It is important to recognize that the potential vorticity is quasi-

conservative only if it is defined by (2.3) to (2.6). When ;eis replaced by

p, as many authors do, it is not conserved even for isentropic processes.

Here we want to use S as a tracer for stratospheric air, so it is relevant to

determine the proper quantity. In this work, ;e is obtained directly from

the Laplacian of the stream function since an isentropic surface is also

a constant G surface.

SPECIFIC DETAILS OF THE M4ETHOD

At each NMC gridpoint we use the z and T values versus p to construct av

sounding from which +M is computed, as described in Danielsen and Deaven (1974).

This grid is cartesian on a polar stereographic projection, true at 600
N .
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However, for our computations it is much more convenient to use a spherical

polar grid so we must convert from x,y to 4,X where is the latitude angle

and X is the longitude angle.

Originally a double parabolic method was used to interpolate to the

4,Xpoints, but this method was discovered to generate vorticity which tended

to amplify in the numerical solutions. To eliminate spurious vorticities, a

5th order interpolation function in x and y was developed and tested. The

test used an analytic function generated from Fourier components to simulate a

reasonably realistic stream function. From the values computed at the x,y

gridpoints, values were interpolated to the pA points and then compared to the

exact values at the same 4,X points. Interpolation errors were evaluated for

1st, 3rd and 5th order in x and y. The reduction in error was significant,

justifying use of the 5th order functions.

After interpolating +M to the , X gridpoints, which includes 32 intervals

in latitude and 128 in longitude (both powers of 2 for later use of Fast

Fourier Transform) the analyses are extended to the equator by merging the

synoptic solutions south of 300N latitude with the monthly mean values. The

method used to compute and analyze the monthly means will be discussed later.

The first step in the diagnostic method is to solve for a stream function

whose Laplacian equals the geostrophic vorticity obtained from

v2 +=V j M  ~ ~~' (2.7)

In solving (2.7) a spherical, polar Poisson solver is used which requires a

value of at the pole and at the equator. To determine appropriate boundary

values (2.7) is integrated over the polar area from the pole to the successive

values oft. In each integration, use is made of Stokes theorem to convert the
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area to a line integral which determines the appropriate mean zonal wind at

each gridline. At the equator, the zonal, monthly mean value is imposed.

Then the integration off',over all latitudes is made to determine the proper

pole value to be associated with the equatorial value, use being made of

L'Hospital's rule to determine the correct 2nd derivative with respect to

at the equator.

Having determined 1' the first approximation to the velocity is given by

V=.* xV (2.8)

where ri is a unit radial (vertical) vector. V closely resembles the geo-

strophic velocity but it is nondivergent.

To obtain a second approximation, the vorticity equation

(r Vq~vv + V) (2.9)

is solved for . Here use is made of Gauss' Thorem to convert the area inte-

gral oi the divergence of Vk to a line integral which determines the mean

meridional wind for each gridline. At the equator this mean wind is set

equal to zero, to be consistent with the adiabatic approximation. Again, the

inrtgrntion is performed to obtain k at the pole when 0 at the

equator.

With k evaluated at each gridpoint, we have to compute the divergent

velocity by solving

V (v +4) v 2  (2.10)

Clearly this solution will be unstable when the absolute geostrophic vorticity

is small. To date we have found it necessary to impose a lower limit of

10-5 sec- 1 to avoid excessive divergent velocity components. This limit is
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reached by smoothing or averaging with the larger surrounding values, thus it

is the numerical equivalent to the mixing which develops from inertial insta-

bility. So the second approximation to the velocity

vl= v Nj r V(2.11)

The next step involves substituting V 2 into a generalized Balance Equation

which is obtained by neglecting only the time derivative of the divergence,

+ Lt2f,4-jV+e 4 (2.12)

Here again, Stokes Theorem is used to determine the boundary conditions. Then

the 3rd approximation is

V, = r + ±V (2.13)

Now (2.9) is resolved with the new stream function 43 to determine a new veloc-

ity potential 4 so the final velocity auproximation is

V4= rXV _ __ J (2.14)

In the first solution of (2.9) three successive analyses of 4( are re-
quired. In the second solution, three successive analyses of i are required

which, in turn, depends on five successive analyses of 4 .
A comparison of the 43 and fields indicates a proper qualitative ad-

justment for subgeostrophic speeds in troughs and supergeostrophis speeds in

ridges. Also, a comparison of the divergence patterns from 4and 4 indicates
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computational stability because the patterns are basically similar in the

location of the convergent and divergent cells with only minor adjustments in

the patterns.

MONTHLY MEAN COMPUTATIONAL METHODS

These initial tests were made by merging the transformed NMC analyses with

hand drawn analyses at low latitudes. A direct comparison of the observed

winds with the NMC winds showed major discrepancies at low latitudes due to the

presence of small cyclones and anticyclones in the NMC analyses. Obviously,

these spurious vortices must be eliminated but by objective rather than hand

methods. After completing the processing of digitally recorded radiosonde

serial ascents from the Panama Canal Zone - sondes were released every 6 hrs

and were tracked by radar - we realized that the large-scale structures were

slowly varying and that the day-to-day variability was produced by internal

waves which could not be resolved by the present day network. For details the

reader is referred to the NASA report by Danielsen and Hipskind (1980).

On the basis of these results it seemed advisable to improve the accu-

racy of the tropical measurements by temporal averaging and to base the exten-

sion to the equator on monthly mean values. However, a technique for detecting

and eliminating large errors and nonrepresentative data had to be developed.

A major difficulty .s to discriminate between height and temperature

errors in the coded data. The method we developed and tested has produced

excellent results. We apply it to all radiosonde reports in the NMC radio-

sonde data tapes but restrict the computations to the mandatory levels only.

Starting at the lowest reported mandatory level, we compute the thickness

of the next layer from the mean of the two reported temperatures and add it to

the lower (first) reported height. The second reported height is then sub-



tracted from the computed height and the error is stored. Next, the thickness

of the second layer is computed and added to the secona reported height. Once

again, the third reported height is subtracted from the computed height and

this error is compared to the former error. If both errors exceed a threshold

value corresponding to an error in mean temperature of 5°K the signs of the

errors are compared. When both errors have the same sign a temperature error

is detected at level two. When the signs differ, a height error is detected

at level two.

The most common coding and transmission errors for temperature are multi-

ples of 1O°K or a reversal in sign, therefore, tests are made to determine

whether errors of this type are responsible for the height discrepancies. If

so, the temperature at the second level is corrected; if not, the temperature

data are omitted from the mean.

To correct a single reported height error, i.e., when the two successive

errors have opposite signs, one-half of the difference (error 2 - error 3) is

subtracted from level two.

When errors are detected that do not fit this pattern, the data are

omitted from the mean but flagged for a subsequent test. As part of the

computation the mean, standard deviation from the mean, and the number of

observations used in the mean are stored. The flagged data are then checked

by computing the deviations from the mean and any deviation exceeding three

standard deviations are rejected.

The winds at the standard pressure levels are first compared to a thresh-

-1
old which is set to 30 m sec at 1000 mb and which increases linearly to

-1
150 m sec at 300 mb. At all lower pressure levels the threshold remains

-L
constant at 150 m sec A second check is based on wind shears, the upper

-2 -
acceptable limit being 5 X 10- sec- . If two successive shears exceed this
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limit and have opposite signs the central level wind is rejected. If the limit

is exceeded in only one layer the two winds are flagged for a subsequent test

based on a comparison of the deviations from the mean to the standard devia-

tions.

After all data for each month are processed, the geopotential heights

will be objectively analyzed to obtain gridpoint values. Two different methods

are being tested but both include a test for nonrepresentative heights and/or

winds. For example, we have found examples where stations reported only a few

times in a month and, although the observations are internally consistent, their

means were nonrepresentative. The tests are sensitive enough to detect the

same data which has been rejected by hand analyses methods.

SUMMARY

The objective diagnostic method discussed briefly above yields balanced

representative ageostrophic horizontal wind components, adiabatic vertical

velocities and consistent thermodynamic scalars at a uniform latitude-longitude

grid over the northern hemisphere. To date the method, based on isentropic

analyses, is restricted to those entropy surfaces which do not intersect the

earth's surface. Methods are still being developed and tested to extend the

analyses to the surface.
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